QUERYING GRAPHS WITH

CHEATSHEETS NEO4)

Querying Graphs with
Neo4;

TABLE OF CONTENTS

Preface
Introduction to Neo4j
What is a Graph Database
Cypher
Getting Started
Installing Neo4j
Accessing Neo4j Browser
Creating a new graph database
Basic Data Retrieval
Retrieving nodes
Retrieving relationships
Combining node and relationship retrieval
Filtering and Sorting
Using WHERE to filter nodes and relationships
Applying multiple conditions
Sorting query results
Aggregation and Grouping
Using COUNT, SUM, AVG, MIN, MAX
GROUP BY clause
Filtering aggregated results with HAVING
Advanced Relationship Traversal
Traversing multiple relationships
Variable-length relationships
Controlling traversal direction
Pattern Matching with MATCH
Matching specific patterns
Optional match with OPTIONAL MATCH
Using patterns as placeholders
Working with Path Results
Returning paths in queries

Filtering paths based on conditions

o p e P R S R N N N I IO B O B R I L e T e T T e T R R - ®~ B R OC B OC B OC B S B NS R NS

Limiting the number of paths

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

QUERYING GRAPHS WITH

CHEATSHEETS NEO4)

Modifying Data with CREATE, UPDATE, DELETE
Creating nodes and relationships
Updating property values
Deleting nodes, relationships, and properties

Indexes and Constraints
Creating indexes for faster querying
Adding uniqueness constraints
Dropping indexes and constraints

Combining Cypher Queries
Using WITH for result pipelining
Chaining multiple queries
Using subqueries

Importing Data into Neo4j
Using Cypher’s LOAD CSV for CSV imports
Integrating with ETL tools
Data Modeling Considerations

Performance Tuning
Profiling queries for optimization
Understanding query execution plans

Working with Dates and Times
Storing and querying date/time values
Performing date calculations
Handling time zones

User-Defined Procedures and Functions
Creating custom procedures and functions
Loading and using APOC library
Extending Query Capabilities

Exporting Query Results
Exporting to CSV
JSON and other formats

Additional Resources

® 0 00 0 00 0 0 0 0 0 N N 9 N9 9 N 9N N9 N9 9N o oo oo oo o0 o o

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

PREFACE

This cheatsheet is your guide to effectively querying
graphs using Neo4j. Whether you’re a seasoned
database professional looking to expand your skills
or a curious enthusiast eager to dive into the world
of graph data, this resource is designed to provide
you with quick and concise information to get you
started.

INTRODUCTION TO NEO4j

Neo4j is a leading graph database management
system that enables efficient storage and Querying
Graphs of connected data. It’s designed to work
with highly interconnected data models, making it
suitable for applications such as social networks,
recommendation systems, fraud detection, and
more.

Key Concepts:

Nodes Fundamental building
blocks representing
entities in the graph
database’s domain.

Connections between
nodes that convey
meaningful information
and context between the
connected nodes.

Relationships

Properties Key-value pairs attached
to nodes and
relationships for storing
additional data or

attributes.

Graph Modeling Graph databases employ
a schema-less model
that offers flexibility to
adapt to changing data

structures.

WHAT IS A GRAPH DATABASE

A graph database is a specialized type of database
designed to store and manage data using graph
structures. In a graph database, data is modeled as
nodes, relationships, and properties. It’s a way to
represent and store complex relationships and
connections between various entities in a more

JAVACODEGEEKS.COM

QUERYING GRAPHS WITH

NE04)

intuitive and efficient manner compared to
traditional relational databases.

Graph databases

offer

several advantages,

especially when dealing with highly interconnected

data:

Advantages Of Graph |Description
Databases

Efficient Relationship
Handling

Flexible Data Modeling

Complex Queries

Use Cases

Graph databases excel at
traversing relationships
efficiently. This makes
them ideal for scenarios
where understanding
connections and
relationships is a critical
part of the data.

Graph databases adopt a
schema-less approach,
enabling easy
adaptation of data
models as requirements
evolve. This adaptability
is particularly beneficial
for dynamic data
structures.

Graph databases excel at
handling complex
queries involving
relationships and
patterns. They can
uncover hidden
relationships and
insights that might be
challenging for
traditional databases.

Graph databases are
well-suited for
applications like social
networks,
recommendation
systems, fraud detection,
and knowledge graphs.
They shine where
relationships are as
important as data.

VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

Advantages Of Graph |Description
Databases

Query Performance Graph databases
generally offer superior
query performance
when retrieving related
data, thanks to their
optimized traversal
mechanisms.

Natural Representation Graph databases
provide a more natural
way to model and
represent real-world
scenarios, aligning well
with how humans
perceive and
understand

relationships.

However, it’s important to note that while graph
databases excel in certain use cases, they might not
be the optimal choice for every type of application.
Choosing the right database technology depends on
the specific needs of your project, including data
structure, query patterns, and performance
requirements.

CYPHER

Neo4j uses its own language for Querying Graphs
called Cypher. Cypher is specifically designed for
querying and manipulating graph data in the Neo4j
database. It provides a powerful and expressive
way to interact with the graph database, making it
easier to work with nodes, relationships, and their
properties.

Cypher is designed to be human-readable and
closely resembles patterns in natural language
when describing graph patterns. It allows you to
express complex queries in a concise and intuitive
manner. Cypher queries are written using ASCII
art-like syntax to represent nodes, relationships,
and patterns within the graph.

For example, a simple Cypher query to retrieve all

nodes labeled as "Person” and their names might
look like:

MATCH (p:Person)

JAVACODEGEEKS.COM

QUERYING GRAPHS WITH

RETURN p.name

In this query, MATCH is used to specify the pattern
you're looking for, (p:Person) defines a node
labeled as "Person,” and RETURN specifies what
information to retrieve.

Cypher also supports a wide range of functionalities
beyond basic querying, including creating nodes
and relationships, filtering, sorting, aggregating
data, and more. It’s a central tool for interacting
with Neo4j databases effectively and efficiently.

It’s important to note that while Cypher is specific
to Neo4j, other graph databases might have their
own query languages or might support other query
languages like GraphQL, SPARQL, etc., depending
on the database technology being used.

GETTING STARTED

To begin using Neo4j for Querying Graphs, follow
these steps:

INSTALLING NEO4j

Download and install Neo4j from the official
website. Choose the appropriate version based on
your operating system. Follow the installation
instructions for a smooth setup.

ACCESSING NEO4J BROWSER

Neo4j Browser is a web-based interface that allows
you to interact with your graph database using
Cypher queries. After installing Neo4j, you can
access the browser by navigating to
https://localhost:7474 in your web browser.

CREATING A NEW GRAPH DATABASE

Once you’re in Neo4j Browser, you can create a new
graph database using Cypher. For example, to
create a node with a "Person” label and a "name"
property, run:

CREATE (:Person {name: 'John'})

NE04)

VISIT JAVACODEGEEKS.COM FOR MORE!

https://neo4j.com/deployment-center/
https://neo4j.com/deployment-center/
https://localhost:7474
https://www.javacodegeeks.com/minibook

CHEATSHEETS

BASIC DATA RETRIEVAL

To retrieve data from your Neo4j database, you can
use the MATCH clause along with patterns to specify
what you’re looking for.

RETRIEVING NODES

To retrieve all nodes with a specific label, use the
MATCH clause followed by the label:

MATCH (p:Person)
RETURN p

RETRIEVING RELATIONSHIPS

To retrieve specific relationships between nodes,
use the MATCH clause with the desired pattern:

MATCH (p1:Person)-[:FRIENDS_WITH]-
>(p2:Person)
RETURN p1, p2

COMBINING NODE AND RELATIONSHIP
RETRIEVAL

You can retrieve both nodes and relationships in a

single query:

MATCH (p1:Person)-[r:FRIENDS_WITH]-
>(p2:Person)
RETURN p1, r, p2

FILTERING AND SORTING

Use the WHERE clause to filter query results based on
specific conditions.

USING WHERE TO FILTER NODES AND
RELATIONSHIPS

Filter nodes based on property values:

MATCH (p:Person)
WHERE p.age > 30

QUERYING GRAPHS WITH
NE04)

RETURN p

APPLYING MULTIPLE CONDITIONS

Combine conditions using logical operators

MATCH (p:Person)

WHERE p.age > 30 AND p.location =
"New York'

RETURN p

SORTING QUERY RESULTS

Use the ORDER BY clause to sort results:

MATCH (p:Person)
RETURN p.name
ORDER BY p.age DESC

AGGREGATION AND GROUPING

Aggregation functions allow you to summarize and
analyze data.

USING COUNT, SUM, AVG, MIN, MAX

Aggregate functions work on numeric properties:

MATCH (p:Person)
RETURN COUNT(p) AS totalPeople,
AVG(p.age) AS avgAge

GROUP BY CLAUSE

Group data based on specific properties:

MATCH (p:Person)

RETURN p.location, AVG(p.age) AS
avgAge

GROUP BY p.location

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

FILTERING AGGREGATED RESULTS WITH
HAVING

Filter groups using the HAVING clause

MATCH (p:Person)

RETURN p.location, AVG(p.age) AS
avgAge

GROUP BY p.location

HAVING avgAge > 30

ADVANCED RELATIONSHIP
TRAVERSAL

Neo4j power of Querying Graphs lies in traversing
complex relationships.

TRAVERSING MULTIPLE RELATIONSHIPS

Navigate through multiple relationships:

MATCH (p:Person)-[:FRIENDS_WITH]-
>(:Person)-[:LIKES]->(m:Movie)
RETURN p, m

VARIABLE-LENGTH RELATIONSHIPS

Use the asterisk (*) syntax for variable-length paths:

MATCH (p:Person)-
[:FRIENDS_WITH*1..2]-
>(friend:Person)
RETURN p, friend

CONTROLLING TRAVERSAL DIRECTION

Specify traversal direction with arrow notation:

MATCH (p:Person)-[:FRIENDS_WITH]-
>(friend:Person)
RETURN p, friend

QUERYING GRAPHS WITH
NE04)

PATTERN MATCHING WITH MATCH

Patterns allow you to specify the structure of your
data.

MATCHING SPECIFIC PATTERNS

Match nodes and relationships based on patterns:

MATCH (p:Person)-[:FRIENDS_WITH]-
>(friend:Person)

WHERE p.name = 'Alice’

RETURN friend

OPTIONAL MATCH WITH OPTIONAL
MATCH

Include optional relationships in the pattern:

MATCH (p:Person)

OPTIONAL MATCH (p)-[:LIKES]-
>(m:Movie)

RETURN p, m

USING PATTERNS AS PLACEHOLDERS

Use variables to match patterns conditionally:

MATCH (p:Person)-[:FRIENDS_WITH]-
>(friend:Person)

WITH friend, size((friend)-[:LIKES]-
>()) AS numlLikes

WHERE numLikes > 2

RETURN friend

WORKING WITH PATH RESULTS

Paths represent
relationships.

sequences of nodes and

RETURNING PATHS IN QUERIES

Use the MATCH clause to return paths:

MATCH path = (p:Person)-
[:FRIENDS WITH]->(:Person)-[:LIKES]-

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

>(m:Movie)
RETURN path

FILTERING PATHS BASED ON
CONDITIONS

Filter paths based on specific criteria:

MATCH path = (p:Person)-

[:FRIENDS WITH]->(friend:Person)
WHERE size((friend)-[:LIKES]->()) >
2

RETURN path

LIMITING THE NUMBER OF PATHS

Use the LIMIT clause to restrict results:

MATCH path = (p:Person)-

[:FRIENDS WITH]->(:Person)-[:LIKES]-
>(m:Movie)

RETURN path

LIMIT 5

MODIFYING DATA WITH CREATE,

UPDATE, DELETE

Cypher allows you to create, update, and delete
data.

CREATING NODES AND RELATIONSHIPS

Use the CREATE
relationships:

clause to add nodes and

CREATE (p:Person {name: 'Eve', age:
28})

UPDATING PROPERTY VALUES

Use the SET clause to update properties:

MATCH (p:Person {name: 'Eve'})
SET p.age = 29

QUERYING GRAPHS WITH
NE04)

DELETING NODES, RELATIONSHIPS, AND
PROPERTIES

Use the DELETE clause to remove data:

MATCH (p:Person {name: 'Eve'})

DELETE p
INDEXES AND CONSTRAINTS
Indexes and constraints enhance query

performance and data integrity.

CREATING INDEXES FOR FASTER
QUERYING

Create an index on a property for faster retrieval:

CREATE INDEX ON :Person(name)

ADDING UNIQUENESS CONSTRAINTS

Enforce uniqueness on properties:

CREATE CONSTRAINT ON (p:Person)
ASSERT p.email IS UNIQUE

DROPPING INDEXES AND CONSTRAINTS

Remove indexes and constraints as needed:

DROP INDEX ON :Person(name)
DROP CONSTRAINT ON (p:Person) ASSERT
p.email IS UNIQUE

COMBINING CYPHER QUERIES

Combine multiple queries for more complex
operations.

USING WITH FOR RESULT PIPELINING

Pass query results to the next part of the query:

MATCH (p:Person)

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

WITH p

MATCH (p)-[:FRIENDS_WITH]-
>(friend:Person)

RETURN p, friend

CHAINING MULTIPLE QUERIES

Chain queries together using semicolons:

MATCH (p:Person)
RETURN p.name;
MATCH (m:Movie)
RETURN m.title

USING SUBQUERIES

Embed subqueries within larger queries:

MATCH (p:Person)

WHERE p.age > (SELECT AVG(age) FROM
Person)

RETURN p

IMPORTING DATA INTO NEO4]J

Importing external data into Neo4j as graphs for
querying is a common task.

USING CYPHER’S LOAD CSV FOR CSV
IMPORTS

Load data from CSV files into the graph:

LOAD CSV WITH HEADERS FROM
‘file:///people.csv' AS row
CREATE (:Person {name: row.name,
age: tolnteger(row.age)})

INTEGRATING WITH ETL TOOLS

Use ETL (Extract, Transform, Load) tools like Neo4j
ETL or third-party tools to automate data imports.

QUERYING GRAPHS WITH

DATA MODELING CONSIDERATIONS

Plan your graph model and relationships before
importing data to ensure optimal performance and
queryability.

PERFORMANCE TUNING

Optimize your queries for better performance.

PROFILING QUERIES FOR OPTIMIZATION

Use the
execution:

PROFILE keyword to analyze query

PROFILE MATCH (p:Person)-
[:FRIENDS WITH]->(:Person)
RETURN p

UNDERSTANDING QUERY EXECUTION
PLANS

Analyze query plans to identify bottlenecks and
optimizations.

Tips for improving query performance:

» Use indexes for property-based filtering.

* Avoid unnecessary traversals by using specific
patterns.

» Profile and analyze slow queries to identify
improvements.

WORKING WITH DATES AND TIMES

Store, query, and manipulate date and time values.

STORING AND QUERYING DATE/TIME
VALUES

Store date/time properties and query them using
comparisons:

MATCH (p:Person)

WHERE p.birthdate > date('1990-01-
01")

RETURN p

NE04)

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

CHEATSHEETS

PERFORMING DATE CALCULATIONS

Perform calculations on date properties:

MATCH (p:Person) EXPORTING TO CSV

SET p.age = date().year -
p.birthdate.year file:
RETURN p

MATCH (p:Person)
HANDLING TIME ZONES

QUERYING GRAPHS WITH

EXPORTING QUERY RESULTS

Export query results for further analysis.

Use the EXPORT CSV clause to export data to a CSV

RETURN p.name, p.age

EXPORT CSV WITH HEADERS FROM

Use the datetime() function to work with time
zones:

MATCH (m:Movie)

SET m.releaseDate = datetime('2023-
07-01700:00:007")

RETURN m

USER-DEFINED PROCEDURES AND
FUNCTIONS

Extend Cypher’s capabilities with user-defined
procedures and functions.

CALL

CREATING CUSTOM PROCEDURES AND
FUNCTIONS

Neo4j Documentation

Write custom procedures using Java and integrate
them into your Cypher queries.

Neo4j Community
Forum

LOADING AND USING APOC LIBRARY

APOC (Awesome Procedures on Cypher) is a
popular library of procedures and functions:

Cypher Query Language
Manual

CALL apoc.date.parse('2023-07-01",
's', 'yyyy-MM-dd') YIELD value
RETURN value.year AS year

Graph Databases for
Beginners

EXTENDING QUERY CAPABILITIES

User-defined functions allow you to encapsulate
logic and reuse it in queries.

JAVACODEGEEKS.COM

‘file:///people.csv’

JSON AND OTHER FORMATS

For JSON export, use the APOC library:

apoc.export.json.query("MATCH
(p:Person) RETURN pé",
"people.json’, {})

ADDITIONAL RESOURCES

Official documentation
for Neo4j, including
guides, tutorials, and
reference materials.

An online community
forum where you can
ask questions, share
knowledge, and engage
with other Neo4j users.

In-depth guide to the
Cypher query language,
explaining its syntax,
functions, and usage.

A beginner-friendly
guide to graph
databases, their
benefits, and how they
compare to other
database types.

NE04)

VISIT JAVACODEGEEKS.COM FOR MORE!

https://neo4j.com/docs/
https://community.neo4j.com/
https://community.neo4j.com/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/wp-content/themes/neo4jweb/assets/images/Graph_Databases_for_Beginners.pdf
https://neo4j.com/wp-content/themes/neo4jweb/assets/images/Graph_Databases_for_Beginners.pdf
https://www.javacodegeeks.com/minibook

QUERYING GRAPHS WITH
CHEATSHEETS NEO4)

Neo4j Online Training Paid and free online

courses provided by
Neo4j to learn about
graph databases and
how to work with Neo4j
effectively.

YouTube: Neo4j Channel Neo4j’s official YouTube
channel with video
tutorials, webinars, and
talks about graph
databases and Neo4j
features.

GitHub: Neo4j Examples Repository containing
sample code and

examples for various
use cases, helping you
understand practical
applications of Neo4;j.

5 Java Code Beeks

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheat sheets, research guides, feature articles, source code

and more.
CHEATSHEET FEEDBACK
WELCOME
support@javacodegeeks.com
Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be SPONSORSHIP
reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, OPPORTUNITIES
mechanical, photocopying, or otherwise, without prior written permission of the publisher sales@javacodegeeks.com

JAVACODEGEEKS.COM VISIT JAVACODEGEEKS.COM FOR MORE!

https://graphacademy.neo4j.com/
https://www.youtube.com/neo4j
https://github.com/neo4j-examples
https://www.javacodegeeks.com/minibook

	Querying Graphs with Neo4j
	Table of Contents
	Preface
	Introduction to Neo4j
	What is a Graph Database
	Cypher

	Getting Started
	Installing Neo4j
	Accessing Neo4j Browser
	Creating a new graph database

	Basic Data Retrieval
	Retrieving nodes
	Retrieving relationships
	Combining node and relationship retrieval

	Filtering and Sorting
	Using WHERE to filter nodes and relationships
	Applying multiple conditions
	Sorting query results

	Aggregation and Grouping
	Using COUNT, SUM, AVG, MIN, MAX
	GROUP BY clause
	Filtering aggregated results with HAVING

	Advanced Relationship Traversal
	Traversing multiple relationships
	Variable-length relationships
	Controlling traversal direction

	Pattern Matching with MATCH
	Matching specific patterns
	Optional match with OPTIONAL MATCH
	Using patterns as placeholders

	Working with Path Results
	Returning paths in queries
	Filtering paths based on conditions
	Limiting the number of paths

	Modifying Data with CREATE, UPDATE, DELETE
	Creating nodes and relationships
	Updating property values
	Deleting nodes, relationships, and properties

	Indexes and Constraints
	Creating indexes for faster querying
	Adding uniqueness constraints
	Dropping indexes and constraints

	Combining Cypher Queries
	Using WITH for result pipelining
	Chaining multiple queries
	Using subqueries

	Importing Data into Neo4j
	Using Cypher’s LOAD CSV for CSV imports
	Integrating with ETL tools
	Data Modeling Considerations

	Performance Tuning
	Profiling queries for optimization
	Understanding query execution plans

	Working with Dates and Times
	Storing and querying date/time values
	Performing date calculations
	Handling time zones

	User-Defined Procedures and Functions
	Creating custom procedures and functions
	Loading and using APOC library
	Extending Query Capabilities

	Exporting Query Results
	Exporting to CSV
	JSON and other formats

	Additional Resources
	cheatsheet ending.pdf
	Design Patterns Cheatsheet
	Table of Contents
	Preface
	About the Author
	1. Introduction
	2. Creational patterns
	2.1. Singleton
	2.2. Factory
	2.3. Abstract Factory
	2.4. Builder
	2.5. Prototype

	3. Structural patterns
	3.1. Adapter
	3.2. Bridge
	3.3. Composite
	3.4. Decorator
	3.5. Facade
	3.6. Flyweight
	3.7. Proxy

	4. Behavioral patterns
	4.1. Chain of Responsibility
	4.2. Command
	4.3. Iterator
	4.4. Mediator
	4.5. Observer
	4.6. Strategy
	4.7. Template Method

